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Summary The method of probability-weighted moments is used to derive estimators of parameters and quantiles of the
three-parameter Weibull distribution. The properties of these estimators are studied. The results obtained are compared
with those obtained by using the method of maximum likelihood. The Weibull probability distribution has numerous
applications in various areas: for example, breaking strength, life expectancy , survival analysis and animal bioassay.
Because of its useful applications, its parameters need to be evaluated precisely, accurately and efficiently. Thereisa
rich literature avaiiable on its maximum likelihood estimation method. However, there is no explicit solution for the
estimates of the parameters or the best linear unbiased estimates. Further, the Weibull parameters cannot be expressed
explicitly as a function of the conventional moments and iterative computational methods are needed. The maximum
likelihood methodology is based on large-sample theory and the method might not work well when samples are small
or moderate in size. Others have proposed a class of moments, called probability-weighted moments. This class seems
to be interesting as a method for estimating parameters and quantiles of distributions which can be written in inverse
form. Such distributions include the Gumbel, Weibull, logistic, Tukey’s symmetric lambda, Thomas Wakeby, and
Mielke’s kappa. It has been illustrated that rather simple expressions for the parameters can be written in inverse form
in terms of probability-weighted moments (PWM) for most of these distributions. In this paper we define the PWM
estimators of the parameters for the three-parameter Weibull distribution. We investigate the properties of these
estimators in a medical application setting. We also examine the added influence that censored data may have on the

estimates.

linear unbiased estimates, and thus iterative
computational methods are required. Further, the
Weibuli parameters cannot be expressed explicitly as a
function of the conventional moments and iterative

1. Introduction

The Weibull probability distribution has numerous
applications in various areas; for example, breaking

strength, life expectancy, survival analysis, and animal
bioassay {Weibull 1938, 1961; Henderson 1965).
Recause of its useful applications, its parameters need
to be evaluated precisely, accurately and efficiently,
There is a rich literature available on its maximum
iikelihood estimation. However, there is no explicit
solution for the estimates of the parameters or the best

computational methods must be used.

The maximum likelihood methodology is based on
large-sample theory, and hence may perform poorly for
small or moderate sample sizes. Greenwood et af
(1979) proposed a class of moments, calied probability
weighted moments (PWM). This class seems to be of



interest as a method for estimating parameters and
quantiles of distributions which can be written in
inverse form. Such distributions include the Gumbel,
Weibull, logistic, Tukey’s symmetric lambda, Thomas
Wakeby, and Mietke’s kappa. Greenwood ef al {1979),
Landwehr and Matalas (1979), Hosking et af (1985),
and Shoukri et al (1988) illustrate that rather simple
expressions for the parameters can be written in inverse
form in terms of probability weighted moments (PWM)
for these distributions.

in this paper we derive the PWM estimators of the
parameters and guantiles of the three-parameter
Weibull distribution. We investigate the distributional
properties of these estimators in large sampies by using
asymptotic theory, and in small and moderate samples
by using Monte Carlo simulation,

2. Probability-Weighted Moments

The (r,s,t) probability-weighted moment (PWM) of a
random variable X with a cumulative distribution
fumction (CDF), F(x), is defined by
M, - E[XT(F(X))(1-FC0 )] (O
where r, s, and t are real numbers. Let X(F) be the
inverse distribution. Then expression (1) can be
written as
1

M, - [ CXEY)F(1-FydF

- [} .
On the other hand, if we have a random sample of size
(s +t+ 1), then M,,, is equivalently the product of
(s+ty'B(s,0) and E[X.,;}, where B(s,t) is the complete
beta function and X,.,, is the {s+1)the order statistic.
However, the sample size, n, need not be equal to
{s+t+1), For further details, the reader is referred to
Greenwood er af (1979) and Hosking et af (1983),

(2)

Let X be the Weibull random variable with probability
density function (Johnson and Kotz 1970, p. 250} given

by
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The corresponding distribution function is
xx b

e
Fy~1-8 P

&

g<x<eo , B>0,8>0.

where o, 8, and 5 are the location, scale, and shape
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parameters, respectively. For properties of this
distribution, Johnson and Kotz (1970, Chapter 20) is an
excellent reference. The inverse distribution function of
F(x) is given by

X(F) - a - B (1 - F) |* (5)

Let M=M,, .. Then the following expression for M,
can easily be shown:

=

where T(.) denotes the gamma function. A similar
expression is also given in Greenwood er of (1979). As
discussed in section 1, the parameters of the Weibull
distribution cannot be expressed explicitly as functions
of the conventional moments. However, it is
interesting to note that Weibull parameters can be
expressed as functions of probability weighted
moments. Following Greenwood et af {1979) we
consider two cases in this paper:

- BT Lyt (6)

Case 1: The location parameter g is known and
without loss of generality can be equal to be zero. We,
therefore, need io estimate the p and & only. The
expression (6) reduces to

M, « BTG-Dy(n 7)
which yields
. M
Bo - - {3
I In(My/M,)
n(2)
and
ln(z—Ml)

Case 2: The location parameter g is unknown and e+0.
Then the parameters «, §, and § are estimated by

i 4MM,-M) {10)
(M,4M,-4M,)
. (M- &)
ﬁ " rl MO*ZMl ] } (} I)
Mn(2)
M,-2M,
and
3 In(2) 12)

P R—
T Mo 2,
20,41,




An unbiased estimator of M, based on the order sample
Koy < gy <o < K, of a random sampie of size n
from a universal distribution has been briefly discussed
by Landwehr et al (1979), Hosking et al (1985) and
others. For the Weibull distribution it is defined by

M. pt 3 DEDGN 5

T e DDy
Hoeffding (1948) proved that M, are closely related to
U - statistics. The properties of U - statistics are given
by Locke and Spurrier {1976}, Fraser (1957, Chap. 4),
Randles and Wolfe (1979, Chap. 3) and others. The U
- statistics have desirable properties including
robustness to outliers in the sample, high efficiency and
asymptotic normality. In fact, Hosking et al extended
some of these properties to the probability weighted
moment estimator 4, and other quantities calculated
from them. However, Hosking et al used

(13)

y 1 o r
Mp,)yn' 2 @)%, (14)
where P ;, = (j-a)/n, 0 <a <1, or P, =(j-a)/(nt1-2a),

172 <a < 1/2, it can be shown that estimators M (P )
are asympiotically equivalent to M and therefore
consistent estimators of Af. In t}us paper, we use
estimators of M, proposed by Hosking, et al.

3. Moment Estimates

As discussed in section 1, the Weibull parameters can

not be expressed exphicitly as a function of the

conventional moments. Let ' = E[X*]. Then in

general the first, second and third central moments are

given as functions of the Weibull parameters e, and
& and can easily be derived:

go- @B T(. §> (15)
- BT . = - THE - —] {16)

3 3. ap, Ly 2
iy g - E) ary 5)1‘(1 5) a7

1
T B
(1 6)]

it is interesting to note that B, which is the coefficient
of skewness, will be a function of & alone. Let B, =
(6}, Then
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Similar expressions for the moment estimators of the
three parameter Weibull distribution are given in Sinha
(1986, p. 71). As suggested by Sinha, one may tabulate
p, for different values of 8. From a given sample we
can compute the sample value of B:s smce the first three
sampie moments are p'-x p', = Dx */nand

- Ix’/n. Once we have the sample value of
Blwe can use the tabulated table of (B, w{d)) to
compute 3. One may need interpolation. By using the
estimated 8 in the following expressions one can
estimate ¢ and 8.

(13

57 . ﬁ’[r{i L3y Ly (19)
3 3

¥ - o- pI( - é) 20)

where

§% . B(x, - M- B

From the moment procedurs it seems that the moment
estimates are easier to compute than their ML -
Counterparts. But efficiency - wise they are of limited
use. However, these may be used as good initials for
the maximum likelihcod method.

4, Maximum Likelihood Estimates

The log - likelihood function for a random saraple of
size n with d failures and n - d censored observations
from the Weibull distribution is given by

Inl - d Ind - db Ln B«

Y
& - 1) Sing, - @ - 20
d " ﬁ

2y

By taking the partial derivatives with respect to «, p
and & respectively and equating them to zero yields:




i

-(8 - Dp? z el B, - z)*! . 0 (22)
-dp® + B(x, - w)® « 0 (23
and
X, - & 8
n - n8Lnf - 88Ln(x, - &) - 62( iﬁ ) . 2
[In{x, - w) - Lnp] « O
Solving (23) for § gives
PRt LY
5. 12;@_‘1:’9; : (25)

Solving (22), (23} and (24) iteratively yields the
mle’s &, fland 8. Allowing &= first order
statistic simplifies the calculations
considerably.

5. {Hustration

We examined a small set of data dealing with time to
failure on an adjuvant breast cancer therapy irial.
Twenty-one subjects received one therapy call it B,
There were eight censored data points. Times ranged
from 3.5 months to 137.4 months. The second group
of women, Group C, totaled 20 with 12 failures and
ranged from 1.5 months to 127 months. A Weibull fit
to either set of data was appropriate.

In Table 1 we have the PWM for Group B computed
according to (14) assuming d=21 failures and d=13
failures or 8 censored observations. Our choice of P,
was (j-a) /n fora=0.5,]=1,... n, and in this case n =
21. In Table 2 we have the parameter estimates under
the full and censored model derived from the PWM in
equations (8) to {12). Also, we have chosen the
location, &, to be equal to 0.0 or the first order statistic,
3.44. In order for the estimate of the shape parameter
to be positive we restricted the denominators in {9) and
{12) to be positive by adding 1 to the denominator..
This is reflected by resulting parentheses in Tables 2
and 5. When one compares the estimates in Table 2 to
the m.le. estimates in Table 3 we see that for our
example the PWM derived parameter estimates are not
very accurate. The estimates of § by PWM, however,
are within two standard errors of the m.l.e. estimates
for the non censored model of & = 21 deaths. The
estimate of p for the censored case by PWM for d =
0.0 can be ransformed by a factor of (n/d)"* to convert
1o approximate the m.Le. of the censored case. Taking
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this fransformation on 54.917 in Table 2 yields a value
of 231.491 which is not within two standard errors of
the estimate, 264.793, in Table 3. Thus dealing with
censored data by PWM is not very promising for
estimating B. Also, the estimates of the shape
parameter, 3, by PWM are not accurate as seen in
Tables 2 and 3. However, when all values in Table 2
are used as initial estimates for the m.le. procedure,
conversion to the appropriate solutions were rapid in
the calculation for equations (22), (23) and {24)
resulting in Table 3.

Tables 4 to 6 repeat the results of Tables 1to 3 fora
different set of values which we label as Group C.
Here we have 20 observations and 12 deaths. As
before for the non-censored case the estimates of § in
Table 5 using the PWM’s of Table 4 are within two
standard errors of the results of the m.1.e.’s in Table 6.
The censored case as before for B was not as accurate.
The & values by PWM were not very reasonable, but
closer to the m.1.e.’s in Table 6 than the previous Group
B data. Also as above, when the values by PWM were
used as initial estimates for solving for the m.l.e.’s the
conversion to sclutions as in Table & were rapid.

6. Conclusion

As can be seen the ultimate advantage for the PWM are
their use as initial estimates for solving the maximum
likelihood equations. Our two data sets did vyield
reasonable estimates by PWM for the parameter § in
the non-censored cases, either with known or unknown
location, . Also in cases in which it is known that the
shape parameter should yield an increasing hazard
function one has to be aware of the restriction that the
first PWM i.e. M, be restricted to greater than twice the
next PWM ie. M,. Our challenge is to investigate the
usage of these techniques in future applications and
determine what further restrictions may be required to
yield sensible solutions to our investigations.
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Group n d T M,
B 21 21 0 36.537
1 39058
3 24.572
21 13 0 81.328
i 63.093
3 39.693

Table 1: Probability Weighted Moments (PWM) For

Group B,
n d & B &
21 21 0.00 34.53 | (1.024)
3.44 52,927 | 10.249
21 13 0.06 54917 1 (0.899)
3.44 95.832 § 10.282

Table 2: Parameter Estimates For Group B Derived
From The PWM

m d & B B

21 21 0.00 45936 0.297
3.44 38.652 0.271

21 13 (.00 264793 | 0.272
3.44 281.695 | 0.238

Table 3: Maximum Likelihood Estimates For Group

B Data
Group n d T M,

C 20 20 0 40.809

1 30.06%

3 20.163

20 12 & 68.016

i 50.115

3 33.608

Table 4: Probability Weighted Moments (PWM) For

Group C

n d & B &

20 20 0.00 20302 | (.981)
149 37.163 | (.738)

20 12 G.00 64.531 | {1.131)
1.49 62.87% | (0.737)

Table 5: Parameter Estimates For Group C Derived
From The PWM

1660

m d & ﬁ’é 5

20 20 0.00 26,424 0.286
1.49 | 25416 0.263

20 12 0.00 187.936 0.275
1.49 171,560 0.268

Table 6; Maximum Likelihood Estimates For Group

C Data




